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Licence Agreement  

This examination is Copyright but may be freely used within the school that purchases this licence. 

• The items that are contained in this examination are to be used solely in the school for which they are 
purchased. 

• They are not to be shared in any manner with a school which has not purchased their own licence. 
• The items and the solutions/marking keys are to be kept confidentially and not copied or made available 

to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of 
showing them how the work is marked but students are not to retain a copy of the paper or marking 
guide until the agreed release date stipulated in the purchasing agreement/licence.  

 

The release date for this exam and marking scheme is 

• the end of week 1 of term 4, Fri October 12th 2018 
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Section One: Calculator-free (54 Marks) 
 

Question 1 (a) (3 marks) 

Solution 
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Mathematical behaviours Marks 

• integrates square root function correctly 

• substitutes limits into correct anti-derivative 

• evaluates result 
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1 

1 

 

Question 1 (b) (2 marks) 

Solution 
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Mathematical behaviours Marks 

• anti-differentiates correctly 

• substitutes in 2(3, )e  to determine c 
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1 

 

Question 1 (c) (2 marks) 

Solution 
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Mathematical behaviours Marks 

• applies the fundamental theorem 

• evaluates result 

1 

1 
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Question 2 (a) (2 marks) 

Solution 
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2.5% of the population is above 3

0.025×150=3.75
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Mathematical behaviours Marks 

• states that 63% represents 2 std deviations above the mean 

• determines number of students above Joanne 

1 

1 

 
Question 2 (b) (2 marks) 

Solution 

           

 

 

 

 

 

 

 

                

Mathematical behaviours Marks 

• diagram demonstrates that both distributions are normally distributed and 

    1 2    

• diagram clearly depicts 1 2   
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Question 2 (c)   (3 marks) 

Solution 
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Mathematical behaviours Marks 

• uses standard deviations to determine a 

• states equation needed to solve for b 

• determines b value 

1 

1 
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Question 3 (a) (2 marks) 

Solution 
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Mathematical behaviours Marks 

• correct entries for X values 

• determines probabilities correctly 

1 

1 

 

Question 3 (b) (2 marks) 

Solution 

E(X) = 5 ×
1
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        = (-1) 

On average, Michael will lose $1 per toss 

Mathematical behaviours Marks 

• determines expected gain correctly 

• explains meaning of the negative value 

1 

1 

 

Question 3 (c) (2 marks) 

Solution 

With a loss of $1 per toss, this is not a “fair” game. 

 

A game is considered “fair” if Michael will, on the average, come out even. 

That is, an expected gain of zero will define a “fair” game. 

 

Mathematical behaviours Marks 

• states game is “not fair”  

• valid explanation 

1 

1 
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Question 4 (a) (3 marks) 

Solution 
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Mathematical behaviours Marks 

• rearranges equation and writes in exponential form 

• applies log laws to each term of equation 

• rearranges equation to arrive at result 
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1 
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Question 4 (b) (3 marks) 

Solution 
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Mathematical behaviours Marks 

• uses 𝑎𝑚. 𝑎𝑛 = 𝑎𝑚+𝑛 and 𝑎log𝑎𝑏 = 𝑏 

• expresses log1

5

125 𝑎𝑠 log1

5

(
1

5
)−3, hence value of (-3) 

• evaluates expression 
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Question 5 (a) (3 marks) 

Solution 

𝑦 = ln√3𝑥 − 𝑥2 
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Mathematical behaviours Marks 

• expresses 𝑦 = ln√3𝑥 − 𝑥2 as   𝑦 =
1

2
ln (3𝑥 − 𝑥2) 

• uses 
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Question 5 (b) (3 marks) 

Solution 
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Mathematical behaviours Marks 

• states anti-derivative of function with bounds  

• substitutes in limits of integration correctly using 
1

sin
4 2


=   

• evaluates result  
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Question 5 (c) (4 marks) 

Solution 
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Mathematical behaviours Marks 

• states correct derivative 

• integrates both sides 

• applies Fundamental Theorem 

• rearranges to arrive at correct result  
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1 
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Question 6 (a) (2 marks) 

Solution 
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Mathematical behaviours Marks 

• identifies that each toss must result in a head 

• determines probability 

1 

1 

 

Question 6(b) (4 marks) 

Solution 
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Mathematical behaviours Marks 

• identifies that p̂ will be normally distributed  

• determines mean and standard deviation for distribution of p̂  

• determines Z score associated with ˆ 0.55p =   

• determines probability 
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Question 6 (c) (3 marks) 

Solution 

𝑃(𝑝1̂ = 𝑝2̂) = 𝑃(𝑝1̂ = 𝑝2̂ = 0) + 𝑃 (𝑝1̂ = 𝑝2̂ =
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Mathematical behaviours Marks 

• determines p̂ values 
1 2

0, , ,1
3 3

  

• states calculation required to determine probability 

• evaluates required sum 
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1 
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Question 7 (a)  (4 marks) 

Solution 

𝑓′(𝑥) = 3𝑥2𝑒−𝑥 − 𝑥3𝑒−𝑥 = 𝑥2(3 − 𝑥)𝑒−𝑥    
 𝑓′(𝑥) = 0    𝑥 = 0  or  𝑥 = 3. 

3 3(0) 0, (3) 3f f e−= =  , so 𝑓 has stationary points at (0,0)  and at  (3, 33𝑒−3)  

Since 𝑓′(𝑥) ≥ 0 if 𝑥 < 3 and 𝑓′(𝑥) < 0 if 𝑥 > 3, 
𝑓 has a point of inflection at (0,0) 
and 𝑓 has a local maximum at (3, 33𝑒−3)  

x 3- 3 3+ 

'( )f x  +ve 0 -ve 

Mathematical behaviours Marks 

• differentiates correctly  

• equates '( ) 0f x =  and determines co-ordinates of stationary points  

• justifies nature of first stationary point  

• justifies nature of 2nd stationary point  
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1 

1 

1 

 
Question 7 (b)  (2 marks) 

Solution 

Yes. 

Reason: 𝑓(3) = 33𝑒−3 = (
3

𝑒
)

3
> 1 since 0 < 𝑒 < 3  

Mathematical behaviours Marks 

• gives correct answer  

• gives a valid reason 

1 

1 

 
Question 7 (c)  (3 marks) 

Solution 

 

 
 

Mathematical behaviours Marks 

• shows inflection point at origin 

• shows maximum at x = 3  

• shows correct limits as x → ∞ and x → −∞  
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1 
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